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Spin liquids on the Husimi cactus 
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Abstract. We have studied the failure of ‘fluctuation-selection’ in a ground state manifold 
associated with an extensive entropy. The recursive structure of the Husimi cactus permits 
exact calculation, and thus avoids problems associated with non-penurbative fluctuations. 
The structure of the barriers separating the ground states can be determined; in all the 
cases we have examined, we find that the system prefers to remain a spin liquid rather than 
to ’localize’ in an ordered state that breaks the degeneracy of the manifold, 

A key feature of frustrated spin systems on a lattice is the enhanced role of short- 
wavelength fluctuations which can modify the long-distance behaviour [l-51. 
Frustration, defined as the inability to minimize the energy of each bond individually, 
often leads to a highly degenerate ground state manifold. Anisotropic thermal and 
quantum fluctuations may partially lift this degeneracy, selecting spin states that 
’minimize the local curvature of the associated free energy surface. Villain and 
coworkers [l]  have called this phenomenon ‘order from disorder’, noting that it often 
leads to a breaking of the lattice symmetry and the selection of a translationally 
invariant magnetic state [2 ,  31. The resulting long-wavelength behaviour is then very 
similar to that of an unfrustrated magnet with no qualitatively new features aside from 
the lifting of the ground state degeneracy. Thus, though in principle the interplay 
between fluctuations and competing interactions could lead to novel spin phases 
[6-131, this fluctuation-selection phenomenon tends to favour conventionally ordered 
states and has therefore been a major obstacle in the pursuit of non-translationally 
invariant spin ground states. 

The nearest-neighbour classical Heisenberg model on a kagom6 lattice has a 
particularly rich ground state degeneracy that is only partially lifted by Gaussian 
fluctuations [14-181. A local discrete degeneracy remains, and further fluctuation- 
selection into an ordered phase characterized by the wavevector q= %(), 3) has been 
proposed by several groups [U, 19-21 . By contrast, recent Monte Carlo studies of 

weight as T+O but instead are consistent with the absence of a local moment in the 
zero-temperature limit [17.18,22]. 

This discrepancy between the analytic and the numerical results is intriguing, and 
suggests that ‘order from disorder’ in a ground state manifold associated with an 
extensive entropy requires further study. Clearly the issue of a global rather than a 
local free energy minimum is crucial. Possible mixing of the states due to finite barrier 
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this model indicate that this ‘~ x J 3’ state does not have the largest Boltzmann 

~~ 
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a) 

Figure 1. Three generations of (a) the triangular and ( b )  the crossed square Husimi 
cactus. 

heights must also be addressed. Finally, a careful accounting of the continuous (So) 
and the discrete (S,) entropic terms must be made; fluctuation-selection within the 
manifold will only occur if 

(1) 
which may not be satisfied if SD is extensive. 

These questions are usually difficult to address analytically because of the non- 
pertubative nature of the fluctuations involved. However, they are tractable on a 
Husimi cactus (figure l), a pseudo-lattice with a polygon at each node whose recursive 
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structure permits exact calcu1ations.t We can easily construct a continuous spin model 
on this pseudo-lattice that has the required extensive ground state entropy, and thus 
can study the associated, ‘order from disorder’ in a controlled fashion. 

We start by considering the classical ny model on the triangular cactus (figure l(a)) 
and determine the number of ground states. These states are entropically equivalent 
and are separated by finite barriers. There is a symmetry-breaking transition at finite 
temperature to a nematic phase with (e’”)+O, but there is no conventional ordering 
and the resulting state is a classical spin liquid. We also discuss the, analogous 
Heisenberg case, where ‘order from disorder’ again fails to select from within the 
ground state manifold. Next we turn to a crossed square cactus model (figure l(b)) 
with an extensive discrete entropy and inequiualent ground states separated by finite 
barriers. Here we find a clear example where the system prefers to remain ‘liquid- 
like’, rather than ‘localizing’ in an ordered state that breaks the degeneracy of the 
manifold. Finally, we return to the triangular cactus with the quantum S = i  problem. 
and show that it is a ‘marginal’ dimer liquid with an entropy that scales with the 
logarithm of the number of sites. All of the systems we have studied here are liquids, 
and we end with some general comments relating the entropykte to the barrier 
heights. The possibility of glassiness in the absence of disorder is also discussed 
briefly. 

We begin with a study of the classical xy antiferromagnet on the triangular cactus 
(figure I(a)); it is defined by the Hamiltonian 

where the summation is over nearest-neighbour bonds. The constraint on each 
triangular plaquette 

s;=o 
(;,A) 

(3) 

does not define a unique ground state configuration, and each spin is an integer 
multiple of 2n/3 up to a global continuous rotation. Once this global degree of 
freedom is k e d ,  these configurations are isomorphic to the ground states of the three- 
state Potts model 

(ii) 

on the same lattice where the Potts variables u i E { O ,  1,2} are constrained to take 
different values for nearest-neighbour sites. There exist 

(5 )  w=3 x 2 ( N - L ) ’ 2  

of these Potts ground states where N is the number of lattice sites:~thus the ground 
state manifold has a finite entropylsite ~ o ~ S o / k s = ~ l n 2 - 0 . 3 4 7 ,  comparable to that 
of the Ising triangular antiferromagnetic [24] (so- 0.338) and approximately twice 
that associated with the three-state Potts model on a kagome lattice 1251 (s0=0.126). 

The full ground state manifold of the three-state Potts model on the triangular 

t For a pedagogical review of recursive Structures. see [23]. 



1544 

cactus can be explored by performing simple lattice symmetry transformations, in 
contrast to the case for most Euclidean lattice models that possess an extensive ground 
state entropy. As displayed in figure 2, a permutation of any two neighbouring sites 
and the two lattice branches emanating from them transforms one ground state into 
another. We thus deduce that all the ground states are equivalent, a feature that 
should persist in the presence of thermaI fluctuations. 

Does the Potts system freeze into one of these ground states at a finite tempera- 
ture? A study of finite-temperature spin dynamics is one possible approach to this 
problem, though it is simpler to remain within the framework of equilibrium statistical 
mechanics. We note that a ground state configuration on this cactus is completely 
determined by the spin values at the boundaries, and that some boundary configur- 
ations do not correspond to any global ground state. We can thus bias the system 
towards a particular bulk ground state by applying an infinitesimal symmetry-breaking 
field at the boundaries and checking for its subsequent amplification. More specifi- 
cally, if we choose a set of boundary values, denoted by 4, compatible with a bulk 
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Q 

Figure2. An example of the lattice symmetry operation that transforms one Pottr ground 
sfate in another. indicating their equivalence. 



Spin liquids on the Husimi cactus 1545 

FigureB. A pictorial representation of an infinitesimal staggered field applied to the 
boundary spins a, and a2; here A and B (fuU arrows) represent the Pot6 directions of the 
applied field and C (broken arrow) is an internal field generated after the trace over the 
boundary spins has been performed. 

ground state a term 

must be added to the original Hamiltonian (4). The partition~function is calculated by 
integrating~ out these boundary spins. As illustrated schematically in figure 3, we 
choose the boundary values of the bias field to be a1 = uA and = uB where = uc 
after 4 and b2 have been traced out; here the letters A ,  B and C serve as altemative 
labels for the Potts variables. The partial trace over uI and u2 yields 

which determines the renormalized symmetry-breaking field by the condition 

so that 

for small h. We note that, sincefp(P) in (9) is an increasing function of /3 (see figure 4), 
it is always smaller than its asymptotic value as P+m (T+O), so that the renorma- 
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t ...... " ...................... 

Figure4. Amplification f(B) associated with an e"-order parameter for the Potts and the 
xy models, respectively, on the triangular Husimi cactus. 

l i e d  field is always less than half the orginal value (h '<ih) .  Physically this implies 
that h' is not amplified but instead scales to zero in the limit of infinite iteration. Thus 
we conclude that there is no staggered order associated with the Potts model at any 
temperature. 

Qualitatively we can understand this result by considering the energy barriers 
separating different ground states. We can identify open paths of alternating spin 
orientations (ABAB . . .) in all the Potts ground state configurations (figure 5) which, 
in analogy to the kagom& case, will be subsequently denoted as folds [17,18,26]. 
Permutation of the two Potts variables along a fold results in a new ground state; 
furthermore, the associated energy cost is at most that of two broken bonds. In 
general it is possible to connect any two Potts ground states by a finite succession of 
such fold-permutations; therefore, all the barriers between the ground states are 
finite. As a result, the system remains delocalized in phase space, and can be 
characterized as a classical spin liquid. 

We can extend this analysis to the xy model on the triangular cactus where 

with the condition that the fields X,<<l for m # l  and Xo=l. In analogy to (8), an 
integration over two boundary spins 8, and 0, in the presence of a symmetry-breaking 
field leads to 
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Figure 5. An illustration of two triangular ground states connected by permutations of the 
Pots variables A and B along a fold. 

which becomes 

Z(8,)= 2 I do, de,X,,X,exp[i(m,+m38~] dudu exp[i(mlu+m2u)] 

(12) 

,vi I 
xexp[-p(cos u+coso+cos(u-U))] 

where we have made the change of variables 8, =e,+ U and 8,= e,+ U. We define 
r 

du du exp(imu) exp[ -P(cos U + cos U + cos(u - U))] (13) 

and then write 
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which leads to the condition 

P Chandra and B Doucot 

that determines the absence1presence of long-range order associated with a given 
field. Since Gm(@)= Em(@) and G,,,(P)= G-m(B) we can rewrite (13) as 

G,(@)= dudu cos(mu)exp{-@[cosu+cos u+cos(u-U)}. (16) 

The Boltzmann weight in (16) is maximized when (U, U) = F (2x13, - 2 ~ 1 3 )  so that 
intuitively G, (@) will be large when m is a multiple of three ((2x13)" = nn) . We also 
expect the largest transition temperature TJm) for m = 3  since 

I 

and thus will study g@). We note that the amplification function g,(,!?) in (15) 
corresponds to ferromagnetic ordering; the analogous expressionf,(b) associated with 
e" antiferromagnetic long-range order (i.e. with three phases modulo M 3 )  is 

where GI(@) and Go(@) are defined in (16). 
The functionsf(p) -f,(P) and g(B) -g3(B) are plotted in figures 4 and 6; however, 

let us try to develop a qualitative feeling for results. For example, application of an 
infinitesimal staggered eis symmetry-breaking field E at the boundaries leads to 

z(e3) = de, de,(i + E  cos(sl - e,)) (1 + E  cos(e, - e,)) e x d  -pqe,, s,, e g  
-x 

(19) 

Figure 6. Amplification g(B) associated with an e'w-order parameter for the xy model on 
the triangular Husimi cactus. 
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where we chose 0, = 0, OB= &I3 and Oc= 4 ~ 1 3 .  It is difficult to evaluate Z(0,) in (19) 
at finite temperatures; however, since our interest is in the presencelabsence of a 
transition, it is sufficient to study the behaviour of a symmetry-breaking field in the 
zero-temperature limit. This amounts to replacing the Boltzmann weight in (11) by 

and in this limit 

z(e3, T=O) = 2 + E  cos(e,- ec) + o ( e 2 )  

which yields the mapping 

E 
E'-+ 

2 
at each iteration, implying the absence of long-range staggered order at any finite 
temperature similar to the Potts result (see figure 4). 

Broken global rotational symmetry is a,clear feature that could distinguish the xy 
from the Potts case, and we next study the  propagation^ of an infinitesimal field 
associated with ei3' order towards the bulk of the system. Analogous to our treatment 
above, we consider 

zye,) = J del de,(1 + E  cos 38,) (1 + E  cos 38,) exp( - {pH(&, e2, e,)}. (23) 
--II -n 

As before, we analyse the behaviour of this symmetry-breaking field in the zero- 
temperature h i t ,  substituting expression (20) for the Boltzdann weight; we then find 
that 

zye,, T= 0) = 2 + 4s COS 3e + o(E*) (24) 
so that 

E'"2E 

implying the presence of long-range order associated with a finite (e") and consistent 
with our previous discussion. Thus at /3< = 10.4 (determined from g(&) = 1 in figure 6) )  
the xy spins undergo partial ergodicity-breaking associated with the freezing of their 
continuous phase, but there is no selection of a particular Potts state. We note that the 
bulk partition function can be written as 

2 = Zz(2,)"~ (26) 
where 2, is the partition function associated with each of N ,  triangles, and thus is 
always smoothly varying with p. The nematic transition is therefore inaccessible in the 
absence of a symmetry-breaking field, which can lead to a bulk fixed-point value h*(@) 
that is a singular function of temperature. 

The Heisenberg model on this triangular cactus (figaure l (a ) )  is also interesting, 
particularly as its ground states are inequioalenr. Here the Hamiltonian is 

H=C ni*ni 
(ii) 

where (ni) is a three-dimensional vector. Most of the ground states are nor coplanar; 
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indeed, starting from a coplanar state it is possible to rotate all the spins beyond a 
given site i around the vector nj without an energy cost. The eigenmode spectrum 
depends on the choice of ground state configuration, a feature that arises from the 
non-Abelian nature of the underlying symmetry group SO(3). Can ‘order from 
disorder’ select a submanifold from this ensemble? In particular, are coplanar states 
favoured as in the Heisenberg kagom.6 antiferromagnet? Accordingly we introduce 
boundary fields that favour an xy plane orientation, and investigate their renormaliza- 
tion after a trace on the boundary spins has been performed. We then have 
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r 

Z(n3)=J d*n,dd?nd?(1+&sinZ8,)(1+&sinZ8~)exp(-~H(n,,nd?,n3)) (28) 

where we have used the usual spherical coordinates (0, q5). In the T=O limit the 
integral is performed over the triangular ground state configurations keeping a fixed 
n3, which is parametrized by a rotation angle around n3. A simple calculation yields 

up to a normalization constant, so that after iteration we get the mapping 
& 

(30) E l = - -  4 + O(E3 

and the field is not amplified in the bulk of the system. There is thus no phase 
transition into a coplanar submanifold, and consequently we do not expect a low- 
temperature phase associated with long-range order in (e”3. 

An anisotropic Heisenberg interaction, that is, making the replacement 

nj. n,-+ n:n’ J + n;ni + an:$ O<a<l (31) 
in (U), would in principle allow us to study the crossover between the Heisenberg and 
the xy models. For example, for a < 1, the ground state manifold is characterized by 
O = d 2  with only coplanar states. Using the same arguments as before, we find that 
there exists a finite-temperature transition into a state where (e”’)+O. However, a 
first-principles calculations of T,(a) is more delicate since after an iteration the 
symmetry-breaking field becomes a function of both 0 and q5. As a approaches unity, 
the fluctuations of 0 about n/2 beco,me large and the subsequent behaviour of the 
system cannot be described by a single variable iteration. 

The Heisenberg model on the triangular cactus has both an extensive entropy and 
inequivalent ground states, and fluctuation-selection appears to fail. How general is 
this result? Let us turn to a more tractable system that shares these two features: the 
xy model on the crossed square Husimi cactus (figure l(b)). We choose our 
Hamiltonian to be the sum of elementary plaquette Hamiltonians where 

H~~~~~~~~~ = (cos(e,- e,) +$)?(a - cos(+ e,)) a>l  (32) 

so that the ground state configurations are isomorphic to those of the three-state Potts 
model on the same lattice. The plaquette configuration (A,A,  B,  C) with associated 
spin variables (0, 0,2n/3,4z/3) is an absolute minimum for 1 <a  < 11/3. 

I n  order to characterize the ground states of this crossed square model we need to 
generalize the folds already discussed for the triangular case. We begin by observing 

1<;+4 
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Q 

Figure 7. Examples of folds on the crossed square Husimi cactus with length (a) L = 1 and 
(b) L= 3 where the fold ends are indicated by arrows. 

that each plaquete has a repeated Potts variable associated with a weak bond. If one 
of  the^ two corresponding spins is modified, the energy of that particular plaquette 
does not change. However, an adjacent square that shares the modified spin may now 
be in an excited state, and thus a spin on this second plaquette must flip; this process 
continues until spin-flips are no longer energetically necessary (see figure 7). If the 
ground states are equally weighted in the manifold, the fold has equal probability 
distribution associated with the observation of a fold of length L is 

p(L)  =++I )  (33) 
where Lis an integer. We contrast this situation with that of the triangular case, where 
all the folds traversed the entire cactus and were only interrupted by the boundaries. 
For the crossed square cactus the eigenmode spectrum for spin-waves in a given 
ground-state will depend on the detailed configuration of the weak links, which are 
the bonds connecting nearest-neighbour sites with the same Potts variables in this 
particular ground state. In particular, a well-defined subset of the ground state 
manifold can have a fold distribution markedly different from (33). For example, a 
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configuration where the repeated Potts variable is A for all elementary squares only 
possesses folds with length L = 1. Heuristically, we can think of these folds as zero 
modes; thus such a state be the most ‘entropically flexible’ in the manifold. Is it 
selected by the fluctuations? We note that this question is of great interest for the 
closely connected xy kagomt example; there the full ground state manifold has a 
distribution P(L)-L-4’3 and the flukuation-selection of the state with the maximum 
number of zero modes has not been observed numerically [17, 18,221. 

On the crossed square Husimi cactus, the fluctuation-selection of the L = 1 state 
corresponds to the development of staggered order. We proceed with a similar 
treatment as already described; however, to thoroughly investigate this possibility, we 
must consider the two cases where the repeated Potts variable is on the bounday and 
on the interior. For the boundary case we have 

Z(&) = 

P Chandra and B Doucot 

de, de, de, (1 + E  cos(0, - 0,)) 

(1 + E  cos(e2 - (34) 

z(e,)= 1 2 + 4 6 ~ 0 ~ ( 0 - e ~ ) + 3  C O S ( ~ - ~ , ) } + O ( E ~ )  (35) 

(1 + E  COS(& - 0,)) exp( -BH(ei, e,, e3, e4)) 
1 

which becomes 

in the limit b+ m , and there is no enhancement of the symmetry-breaking term 
(E’ = d2). Otherwise, the repeated Potts variable could be on an inner site with 

ice4) = de, de, de3 (1 + E  cos(0, - e,)) 

x ( i + ~ ~ O ~ ( e ~ - e ~ ) ) ( i + ~ c o ~ ( e ~ - e ~ ) )  exP(-BH(e,, e2. e3, 03) (36) 

zfe.,) = 12 + o ( E ~ )  (37) 

J 
which yields 

in the T-0 limit, again indicating the absence of an amplified symmetry field. 

partition function 
How do we interpret these results? Within a spin-wave analysis we find that the 

isfactorizable, a result that relies on the special topology of the lattice and not on the 
specific (Gaussian) approximation used; here 6’; refers to the spin deviations from a 
given configuration. In any ground state configuration there is just one weak link per 
elementary square. The spin-wave free energy, the product of all the non-vanishing 
eigenvalues, is independent of the details of the positions of these links. More 
specifically, the factorizability of the free energy implies the absence of interactions 
between the weak bonds and thus there is no fluctuation-selection to all orders in the 
spin deviations. 

How similar is the quantum case? In order to address this question, we turn briefly 
to the quantum S= 4 Heisenberg spin model on the triangular cactus, and the analysis 
of the ground state follows closely that of the Majumdar-Ghosh model [27,28]. We 
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FigureS. A graphical representation of the linear dependence of the three dimer 
configurations on an elementary triangle. 

first note that the Heisenberg Hamiltonian can be rewritten in the form 

H = 2 (Sl + S2 + S3)* 
A 

(39) 

up to a constant term where each elementary triangle has a total spin S = in a ground 
state. We use the usual notation (ij) to denote a singlet bond between sites i and j .  The 
ground state manifold for a single triangle (1,2,3) is spanned by the states (12)u3, 
( 2 3 ) ~ ~  and (31)u2, where U, is the spin value at site i. The six states thus defined are nof 
linearly independent since 

(12)u3+(23)u1+(31)u2=0 , (40) 
if ul=u2=u3. Indeed, there only exist two independent S=: states on the triangle, 
and its ground state subspace thus has dimension four. It is straightforward to 
construct a set of ground states from this representation, as illustrated in figure 8. 
These states are labelled by li, U) where i is the site of the free spin with z-component 
U= ++. A unique dimer configuration is defined by each choice of free spin position. 
These states are ground states by construction, since each triangle has one singlet 
bond. By recursion on the number of triangles one can show that the ground states are 
linear combinations of these l i ,  U )  states: the proof is straightforward but lengthy, so it 
will not be presented here. We note, though, that all of these states are not linearly 
independent; in fact, for each value of U= k.1- we have the constraint 

li, U) + l j ,  U) + Ik, u)=O (41) 
per triangle where i, j and k are the three triangular sites. Thus we have 2N, dimer 
states (see figure 9 for an example) with 2N,independent constraints, where N, and N, 
are the number of sites and triangles, respectively. Since N,=+(N,- l),  the dimension 
of the ground state manifold is 

w= 2(N, - N,) = N, + 1. (42) 
Expression (42) indicates that though the quantum fluctuations are not selecting a 
unique ground state, they are more efficient than their thermal counterparts [29] in 
restricting  the^ phase space explored by the system (&=(l/N,) InN,). It would 
certainly be very interesting to characterize the elementary excitations of this model, 
as well as to reconstruct its low-temperature thermodynamics. Quantum tunnelling 
between classical states associated with its large S limit [30,31] could also be studied, 
and we leave these questions for future work. 
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Figure9. A dimer state on a section of the triangular Husimi cactus with three gener- 
ations. 

In conclusion, we have studied a number of examples where the conventional 
‘order from disorder’ mechanism fails. Each of these spin models has coexisting 
continuous and discrete low-energy excitations, and a total entropy 

s = SD + se (43) 
where both contributions scale with the site number. Most frustrated spin systems 
minimize their free energy by ‘localizing’ in a state of high symmetry associated with 
the maximum continuous entropy. However, the situation in a ground state manifold 
associated with a large, ewtemioe SD is not straightforward. In analogy to the case of 
electronic propagation in disordered media, the discrete entropy SD plays the role of 
the bandwidth W which prefers ‘delocalization’; similarly, the continuous entropy Se is 
like the root mean square of the random part of the potential which inhibits 
diffusion. We thus expect the absence of fluctuation-selection if the condition 

SD > se (44) 
, is satisfied, analogous to the more conventional delocalization criterion 

W > W  
for the electron problem; since So involves the continuous fluctuations of each spin 
about its equilibrium position, clearly SD must scale with the number of sites for (44) 
to be fulfilled. We emphasize that the entropy, unlike the electronic energy, has no 
intrinsic time-scale; thus, both a liquid and a glass are ‘entropically delocalized‘ and 
must be distinguished by their dynamics. In this paper, using the recursive structure of 
the Husimi cactus, we have studied analytically spin models with very large extensive 
discrete entropies; we have shown that they do not select ‘spin-crystalline’ ground 
states but prefer to remain ‘entropically delocalized‘ in agreement with (44). 
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Figurelo. An illustration of the heuristic connection between the entropylsite and the 
resulting low-temperature phase. 

Another common feature of all of the models studied here is the presence offinite 
barriers connecting the ground states at zero temperature. At T=O, where these 
barriers are purely associated with an energy cost, the continuous degrees of freedom 
provide alternative paths between different ground states and thus these barriers are 
lower than their discrete counterparts. Clearly, entropic considerations must be taken 
into account at finite temperatures. The main effect of decreasing temperature on the 
resulting spin liquid is to increase the residence time in each well, but the system does 
not ‘dynamically’ localize in phase space as would a glass. In the presence of such a 
large number of small barriers, the issue of liting the degeneracy of the ground state 
loses most of its importance. To this end we have studied two different models with 
large discrete entropies and finite barriers; though in one case the ground states were 
equivalent and in the other they were not, the qualitative features of the final liquid 
states are indistinguishable. We also note that the presence of such a spin liquid is not 

. incompatible with a finite-temperature nematic transition; for example, on the 
kagomk lattice such a transition is accompanied by a jump in the spin stiffness and the 
binding of Kosterlitz-Thouless vortices. 

There has been some hope that the interplay between continuous and discrete 
degrees of freedom could lead to glassy behaviour in the absence of disorder. This 
would require the increase of the discrete barriers by low-lying continuous excitations, 
a phenomenon that has not been observed here. Returning to the discrete models, we 
note the connection between the number of ground states and the typical barriers 
separating them. Intuitively, an increase in the extensive entropy results in a decrease 
in the typical barrier height, since the associated ground states will be closely packed 
in phase space. Conventional ‘order from disorder’ works very well in the limit of 
vanishing entropy/site, possibly because the barriers are large enough to localize the 
system in the vicinity of the most favoured state. Conversely, in the limit of large 
entropylsite that we have studied here, the barriers are too low to achieve such a 
result and the standard fluctuation-selection mechanism fails. We thus speculate 
(figure 10) that there exists a potentially ripe intermediate region between these two 
extreme cases where the system has a small extensive entropy and very large barriers; 
here the presence of glassiness in the absence of disorder remains a real possibility. 

~ 

~ ~ 
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